Intelligent, Biodegradable, and Self‐Healing Hydrogels Utilizing DNA Quadruplexes

نویسندگان

  • Shizuma Tanaka
  • Kenta Wakabayashi
  • Kazuki Fukushima
  • Shinsuke Yukami
  • Ryuki Maezawa
  • Yuhei Takeda
  • Kohei Tatsumi
  • Yuichi Ohya
  • Akinori Kuzuya
چکیده

A new class of hydrogels utilizing DNA (DNA quadruplex gel) has been constructed by directly and symmetrically coupling deoxynucleotide phosphoramidite monomers to the ends of polyethylene glycols (PEGs) in liquid phase, and using the resulting DNA-PEG-DNA triblock copolymers as macromonomers. Elongation of merely four deoxyguanosine residues on PEG, which produces typically ≈10 grams of desired DNA-PEG conjugates in one synthesis, resulted in intelligent and biodegradable hydrogels utilizing DNA quadruplex formation, which are responsive to various input signals such as Na+ , K+ , and complementary DNA strand. Gelation of DNA quadruplex gels takes place within a few seconds upon the addition of a trigger, enabling free formation just like Ca+ -alginate hydrogels or possible application as an injectable polymer (IP) gel. The obtained hydrogels show good thermal stability and rheological properties, and even display self-healing ability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A dynamic and self-crosslinked polysaccharide hydrogel with autonomous self-healing ability.

Natural polymeric hydrogels with self-healing capability that can recover the functionalities and structures of gels after damage are extremely attractive due to their emerging applications in the biomedical field. Here we report a self-healable polymeric hydrogel by self-crosslinking two natural polymers acrylamide-modified chitin (AMC) containing amino groups and oxidized alginate containing ...

متن کامل

An Intriguing Method for Fabricating Arbitrarily Shaped “Matreshka” Hydrogels Using a Self-Healing Template

This work describes an intriguing strategy for the creation of arbitrarily shaped hydrogels utilizing a self-healing template (SHT). A SHT was loaded with a photo-crosslinkable monomer, PEG diacrylate (PEGDA), and then ultraviolet light (UV) crosslinked after first shaping. The SHT template was removed by simple washing with water, leaving behind the hydrogel in the desired physical shape. A hi...

متن کامل

Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.

Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wou...

متن کامل

Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(e...

متن کامل

Bone regeneration mediated by a bioactive and biodegradable ECM-like hydrogel based on elastin-like recombinamers

The morbidity of bone fractures and defects is steadily increasing due to changes in the age pyramid. As such, novel biomaterials that are able to promote the healing and regeneration of injured bones are needed in order to overcome the limitations of auto-, allo-, and xenografts, while providing a ready-to-use product that may help to minimize surgical invasiveness and duration. In this regard...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017